The ER–Golgi intermediate compartment is a key membrane source for the LC3 lipidation step of autophagosome biogenesis

نویسندگان

  • Liang Ge
  • David Melville
  • Min Zhang
  • Randy Schekman
چکیده

Autophagy is a catabolic process for bulk degradation of cytosolic materials mediated by double-membraned autophagosomes. The membrane determinant to initiate the formation of autophagosomes remains elusive. Here, we establish a cell-free assay based on LC3 lipidation to define the organelle membrane supporting early autophagosome formation. In vitro LC3 lipidation requires energy and is subject to regulation by the pathways modulating autophagy in vivo. We developed a systematic membrane isolation scheme to identify the endoplasmic reticulum-Golgi intermediate compartment (ERGIC) as a primary membrane source both necessary and sufficient to trigger LC3 lipidation in vitro. Functional studies demonstrate that the ERGIC is required for autophagosome biogenesis in vivo. Moreover, we find that the ERGIC acts by recruiting the early autophagosome marker ATG14, a critical step for the generation of preautophagosomal membranes. DOI:http://dx.doi.org/10.7554/eLife.00947.001.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Phosphatidylinositol 3-kinase and COPII generate LC3 lipidation vesicles from the ER-Golgi intermediate compartment

Formation of the autophagosome requires significant membrane input from cellular organelles. However, no direct evidence has been developed to link autophagic factors and the mobilization of membranes to generate the phagophore. Previously, we established a cell-free LC3 lipidation reaction to identify the ER-Golgi intermediate compartment (ERGIC) as a membrane source for LC3 lipidation, a key ...

متن کامل

Subcellular Evidence for Biogenesis of Autophagosomal Membrane during Spermiogenesis In vivo

Although autophagosome formation has attracted substantial attention, the origin and the source of the autophagosomal membrane remains unresolved. The present study was designed to investigate in vivo subcellular evidence for the biogenesis of autophagosomal membrane during spermiogenesis using transmission-electron microscopy (TEM), Western blots and immunohistochemistry in samples from the Ch...

متن کامل

An Atg4B mutant hampers the lipidation of LC3 paralogues and causes defects in autophagosome closure.

In the process of autophagy, a ubiquitin-like molecule, LC3/Atg8, is conjugated to phosphatidylethanolamine (PE) and associates with forming autophagosomes. In mammalian cells, the existence of multiple Atg8 homologues (referred to as LC3 paralogues) has hampered genetic analysis of the lipidation of LC3 paralogues. Here, we show that overexpression of an inactive mutant of Atg4B, a protease th...

متن کامل

Casting the autophagy net

C ells can degrade cytoplasmic components by capturing them inside a double-membraned vesicle called the autophagosome that then delivers them to lysosomes to be broken down and recycled. This process, known as autophagy, occurs at basal levels in all cells, and is upregulated in response to starvation or other stresses as a cell survival mechanism. But autophagy is a double-edged sword that ca...

متن کامل

Clusterin facilitates stress-induced lipidation of LC3 and autophagosome biogenesis to enhance cancer cell survival

We define stress-induced adaptive survival pathways linking autophagy with the molecular chaperone clusterin (CLU) that function to promote anticancer treatment resistance. During treatment stress, CLU co-localizes with LC3 via an LIR-binding sequence within autophagosome membranes, functioning to facilitate LC3-Atg3 heterocomplex stability and LC3 lipidation, and thereby enhance autophagosome ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 2  شماره 

صفحات  -

تاریخ انتشار 2013